of *p*-chlorobenzoic acid are hydrogen-bonded in pairs across centres of symmetry, and the pairs are arranged in stacks. A detailed analysis of the crystal packing and of its relationship to the anisotropy of the solid-state reaction with gaseous ammonia has been given (Miller, Paul & Curtin, 1974).

The geometrical parameters obtained here for the $O(2)-H(O)\cdots O(1')^*$ hydrogen bond are: distances $O(2)\cdots O(1') = 2.618$ (2); O(2)-H(O) = 1.07 (4); $H(O)\cdots O(1') = 1.56$ (4) Å; angle $O(2)-H(O)\cdots O(1') = 170$ (4)°. Note that the $O(2)\cdots O(1')$ distance is the same as in *p*-fluorobenzoic acid (Colapietro, Domenicano & Pela Ceccarini, 1979).

We thank professor A. Vaciago for this continuing interest and Mrs C. Marciante for technical help.

* The symmetry operation relating O(1') to O(1) is -x, -y, -z.

References

- BRUNO, G. & RANDACCIO, L. (1980). Acta Cryst. B36, 1711-1712.
- CAMERON, A. F. & DUNCANSON, F. D. (1976). Acta Cryst. B32, 1991–1994.
- COLAPIETRO, M. & DOMENICANO, A. (1977). Acta Cryst. B33, 2240–2243.
- COLAPIETRO, M. & DOMENICANO, A. (1978). Acta Cryst. B34, 3277–3280.
- COLAPIETRO, M., DOMENICANO, A., MARCIANTE, C. & PORTALONE, G. (1981). Acta Cryst. B37, 387-396.
- COLAPIETRO, M., DOMENICANO, A. & PELA CECCARINI, G. (1979). Acta Cryst. B35, 890–894.
- COLAPIETRO, M., DOMENICANO, A. & PORTALONE, G. (1980). Acta Cryst. B36, 354–358.
- DIEHL, P. & JOKISAARI, J. (1979). J. Mol. Struct. 53, 55-60.

- DI RIENZO, F., DOMENICANO, A. & RIVA DI SANSEVERINO, L. (1980). Acta Cryst. B36, 586–591.
- DOMENICANO, A. & MURRAY-RUST, P. (1979). *Tetrahedron Lett.* pp. 2283–2286.
- DOMENICANO, A. & VACIAGO, A. (1979). Acta Cryst. B35, 1382–1388.
- DOMENICANO, A., VACIAGO, A. & COULSON, C. A. (1975). Acta Cryst. B31, 1630–1641.
- ESPIRITU, A. A. & WHITE, J. G. (1977). Acta Cryst. B33, 3899–3901.
- GOUGOUTAS, J. Z. & LESSINGER, L. (1975). J. Solid State Chem. 12, 51–62.
- HøG, J. H. (1971). Thesis, Univ. of Copenhagen.
- HOPE, H. & VICTOR, D. (1969). Acta Cryst. B25, 1849-1853.
- KLYNE, W. & PRELOG, V. (1960). Experientia, 16, 521-523.
- MICHEL, F., NERY, H., NOSBERGER, P. & ROUSSY, G. (1976). J. Mol. Struct. 30, 409-415.
- MILLER, R. S., PAUL, I. C. & CURTIN, D. Y. (1974). J. Am. Chem. Soc. 96, 6334–6339.
- OHKURA, K., KASHINO, S. & HAISA, M. (1972). Bull. Chem. Soc. Jpn, 45, 2651–2652.
- PENIONZHKEVICH, N. P., SADOVA, N. I. & VILKOV, L. V. (1979). Zh. Strukt. Khim. 20, 527–529.
- Pérez, S. & Brisse, F. (1975). Can. J. Chem. 53, 3551-3556.
- POLLOCK, J. MCC. & WOODWARD, I. (1954). Acta Cryst. 7, 605.
- RABINOVICH, D. (1969). J. Chem. Soc. (A), pp. 2361-2366.
- SCHULTZ, GY., HARGITTAI, I. & DOMENICANO, A. (1980). J. Mol. Struct. 68, 281–292.
- SPIRLET, M. R., VAN DEN BOSSCHE, G., DIDEBERG, O. & DUPONT, L. (1979). Acta Cryst. B35, 203-205.
- STOUT, G. H. & JENSEN, L. H. (1968). X-ray Structure Determination, p. 411. London: Macmillan.
- WHEELER, G. L. & COLSON, S. D. (1975). Acta Cryst. B31, 911–913.
- WHEELER, G. L. & COLSON, S. D. (1976). J. Chem. Phys. 65, 1227-1235.

Acta Cryst. (1982). B38, 1957–1962

Structures of (*RR*) and (*RS*)-Bis[1-(2,4,6-trimethylphenyl)ethyl] Ether: A Relative-Configuration Problem

By C. Foces-Foces, F. H. CANO AND S. GARCÍA-BLANCO

Departamento de Rayos X, Instituto de Química-Física 'Rocasolano', CSIC, Serrano 119, Madrid-6, Spain

(Received 18 July 1981; accepted 11 January 1982)

Abstract

 $C_{22}H_{30}O, M_r = 310.481; RR$ compound (A): monoclinic, $P2_1/c, a = 8.0827$ (2), b = 31.6784 (26), c = 7.7624 (2) Å, $\beta = 103.092$ (2)°, V = 1935.9 (2) Å³, $D_x = 1.065$ Mg m⁻³, Z = 4, μ (Cu Ka) = 0.4471 mm⁻¹, final R = 0.053 for 2217 observed reflexions; *RS* compound (*B*): orthorhombic, *Pc*2₁*n*, *a* = 11.8337 (6), *b* = 10.3267 (4), *c* = 15.5781 (10) Å, *V* = 1903.7 (1) Å³, *D_x* = 1.083 Mg m⁻³, *Z* = 4, μ (Cu *K* α) = 0.4546 mm⁻¹, final *R* = 0.067 for 1193 observed reflexions. A description of the relative configuration of 1958

the asymmetric C atoms is presented in terms of the torsion angles, as well as the twist along the chain. The first compound contains an approximate noncrystallographic twofold axis.

Introduction

This work deals with the solution of relative configuration to distinguish between two stereoisomeric compounds, A and B, a racemate and a meso form, the assignment of which to the actual product was not possible by IR or NMR spectroscopy.

Table	1. Additional	crystal	data	and	structure
	refin	iement de	etails		

	A		В		
Unit-cell determination	Least	-squares fit fr	om:		
	60		57		
	reflex	ions with $\theta <$	45°		
Crystal size (mm)	$0.16 \times 0.16 \times 0$	0.32 0.10 ;	< 0.16 × 0.40		
Stability	No si	nificant varia	tion		
Technique and geometry	Four-circle diffr.	actometer. Ph	ilips PW 1100		
	with graphite-mo	nochromated	radiation. $\omega/2\theta$		
		scan mode			
Total measurements	3265	$\ln t_0 \theta = 62^\circ$	3088		
No. of independent reflexions	3032	10 10 0 - 02	1502		
Criterion of obs. reflexions	0002	$l > 2\sigma(l)$	1.575		
No. of observed reflexions	2217	1 > 20(1)	1103		
Atomic scattering factors	International Tables for X-ray Crystallography				
		(1974)	er joitanographij		
Computer programs	XR	AY 70 system	n		
Solution	MUI	TAN 78 syst	em		
Refinement method	Block diag	onal on obser	rved F's		
H atoms	From d	ifference synt	hesis		
Parameters refined:					
non-H atoms	(Coordinates and a	hisotropic terr	perature factors'		
	207		206		
H atoms	(Coordinates and i	sotropic temp	erature factors)		
—		120			
Extinction correction	1	Not applied			
No. of reflexions per parameter	6-45		3.64		
Weighting scheme (see Table 2)	Empirical as to	give no trends	s in $\langle w\Delta^2 F \rangle$.		
R(obs.)	0.053	-	0.067		
K "(ODS.)	0.056		0.080		

Structure solution

Table 1 shows additional crystal data and structure refinement details. The structure was solved with MULTAN (Main, Hull, Lessinger, Declercq, Germain & Woolfson, 1978) and the XRAY system (Stewart, Kundell & Baldwin, 1970) used on a Univac 1100/80 computer with the least-squares e.s.d.'s as estimates of the precision.* Table 2 gives the weighting scheme employed and Table 3 gives the parameters of the full-normal δR_w plots (Abrahams & Keve, 1971) for

* Lists of structure factors and anisotropic thermal parameters have been deposited with the British Library Lending Division as Supplementary Publication No. SUP 36762 (13 pp.). Copies may be obtained through The Executive Secretary, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

Table 3. The δR_w full-normal probability plot parameters

	A	В
Ν	3032	1593
R_{T}	0.078	0.090
Points excluded	8	1
R	0.077	0.088
Zero intercept	0.010(1)	0.022(1)
Slope	0.851(1)	0.821(1)
ρ	0.998	0.999
χ^2	0.003	0.002

N: the total number of points. R: the usual crystallographic disagreement index. DP: the statistic: $|F_{\rho} - F_{c}| \sqrt{w}$. ρ : the linear correlation coefficient. Points excluded if |DP| < 3.

Table 2. Weighting scheme

$w = K/[f_1(F_o)]^2 \cdot f_2(\sin \theta/\lambda), f_1(F_o) = A_1 + B_1 F_o + C_1 F_o ^2, f_2(\sin \theta/\lambda) = A_2 + B_2(\sin \theta/\lambda) + C_2(\sin \theta/\lambda)$	$[F_o]^2 \cdot f_2(\sin \theta/\lambda), f_1(F_o) = A_1 + B_1 F_o + C_1 F_o ^2, f_2(\sin \theta/\lambda) = A_1 + B_2$	$(\sin \theta/\lambda) + C_2(\sin \theta/\lambda)^2$
---	--	--

Compound		Α				R	
K		0.5848				0.6922	
Coefficients	A_1	<i>B</i> ₁	<i>C</i> ₁		Α,	B.	C
$\begin{array}{rrrr} F_{o} \leq & 2 \cdot 7 \\ 2 \cdot 7 < F_{o} \leq & 5 \cdot 4 \\ 5 \cdot 4 < F_{o} \leq & 6 \cdot 0 \\ 6 \cdot 0 < F_{o} \leq & 9 \cdot 0 \\ 9 \cdot 0 < F_{o} \leq & 20 \cdot 0 \\ 20 \cdot 0 < F_{o} \end{array}$	0.5361 1.4920 0.7048 0.5126 0.1847 0.1092	$\begin{array}{c} 0.2179 \\ -0.5036 \\ -0.0165 \\ -0.0120 \\ 0.0160 \\ 0.0129 \end{array}$	0.0671 0.0644 - - -	$\begin{array}{rrr} F_{o} \leq 2 \cdot 6 \\ 2 \cdot 6 < F_{o} \leq 5 \cdot 3 \\ 5 \cdot 3 < F_{o} \leq 8 \cdot 2 \\ 8 \cdot 2 < F_{o} \leq 10 \cdot 0 \\ 10 \cdot 0 < F_{o} \end{array}$	1.0174 0.7756 0.3863 0.3182 0.2559	-0.0622 -0.0474 0.0256 0.0211 0.0170	-0.0023 -0.0017 - - -
	A_2	B_2	C_2		<i>A</i> ₂	<i>B</i> ₂	С,
$\frac{\sin \theta/\lambda}{0.40 < \sin \theta/\lambda} \le 0.40 \text{ Å}^-$	¹ 7.5943 2.5365	-77.6018 -3.4512	90.3015	$\frac{\sin \theta / \lambda \leq 0.44 \text{ Å}}{0.44 < \sin \theta / \lambda}$	6∙4467 6∙4229	-15.2881 -12.7305	7·7661 5·5703

both compounds, showing the accuracy of the weighting scheme.

Results

The atomic numbering is in Fig. 1, where the structures are shown projected along the $C(1)\cdots C(3)$ line. The positional parameters and the bond distances and angles are presented in Tables 4, 5 and 6. In Fig. 2 (*ORTEP*, Johnson, 1971) the conformational and configurational differences are apparent, that is the interchange between Me and R at C(1), and this was taken into account for the half-normal probability comparison given below. In Table 7 are the main torsion angles describing the molecule.

Fig. 1. Atomic numbering for both molecules showing the configuration along $C(1) \cdots C(3)$.

Fig. 2. Comparison of the relative configurations in both molecules.

Discussion

The interatomic distances up to 3.5 Å have been compared by a half-normal probability plot, see Fig. 3. Of the seven points excluded from the fit, the main differences are due to O(2)-C(3) and C(3)-C(5) being shorter and C(3)-C(31) longer in compound *B* than in *A*. Another marked difference is in the angles at C(1), which seem to be interchanged, as if the *R* substituent has no influence on the bond angle: O(2)-C(1)-C(4) = 106.4° in *A* vs 113.2° in *B* and O(2)-C(1)-C(11) = 113.9° in *A* vs 108.9° in *B*. These are the main features indicating that the C(5)-C(3)-O(2)-C(1)-C(4)/C(11) chain is slightly more open in compound *B* than in compound *A*.

For each asymmetric C atom, the relative configuration can be described in terms of the configurational angles (Foces-Foces, Cano & García-Blanco, 1980): $\rho = \tau - \tau_0$, τ being the experimental

Table	4.	Atomi	c coord	inates	and	equiva	lent	isotropic	therma	l para	meters	for	the	heavy	, ato	ms
-------	----	-------	---------	--------	-----	--------	------	-----------	--------	--------	--------	-----	-----	-------	-------	----

 $U_{\rm eq} = \frac{1}{3} \sum_i \sum_j U_{ij} a_i^* a_i^* a_i \cdot \mathbf{a}_j \cos(a_i, a_j).$

		Comp	ound A	Compound B				
				U_{eq}				U_{eq}
	x	У	Z	$(\dot{A}^{2} \times 10^{4})$	x	У	Z	$(\dot{A}^2 \times 10^3)$
C(1)	0.53956 (40)	0.11576 (9)	0-35178 (38)	729 (10)	0.6816 (6)	0.1606 (8)	0.1836 (4)	68 (2)
O(2)	0.61708 (23)	0.12982 (6)	0.52622 (24)	717 (7)	0.6793 (5)	0.2500	0.1131(3)	85 (2)
C(3)	0.49879 (36)	0.13943 (9)	0.63179 (35)	661 (9)	0.7549 (8)	0.2317 (8)	0.0479 (5)	83 (3)
C(4)	0.68460 (64)	0.10500 (15)	0.26270 (62)	1049 (18)	0.7836 (7)	0.1799 (14)	0.2432 (7)	99 (4)
C(5)	0.60200 (53)	0.15761 (14)	0.80425 (48)	947 (14)	0.7445 (12)	0.3388 (9)	-0.0161(7)	95 (4)
C(11)	0.41334 (34)	0.14702 (8)	0.24622 (33)	616 (9)	0.5708 (6)	0.1726 (8)	0.2324(4)	64 (2)
C(12)	0.45177 (35)	0.18993 (8)	0.23370 (36)	666 (10)	0.5104(7)	0.0590 (7)	0.2516(4)	63 (2)
C(13)	0.32923 (38)	0.21673 (9)	0.13665 (41)	725 (11)	0.4110(7)	0.0643 (8)	0.2968 (4)	65 (2)
C(14)	0.17113 (38)	0.20278(9)	0.04991 (38)	717 (11)	0.3676 (6)	0.1812 (8)	0.3265 (4)	64 (2)
C(15)	0.13700 (42)	0.16044 (10)	0.06196 (39)	757 (11)	0.4298 (6)	0.2924 (8)	0.3102(4)	64 (3)
C(16)	0.25389 (38)	0.13228 (9)	0.15685 (34)	690 (10)	0.5310 (6)	0.2920 (8)	0.2642 (4)	66 (2)
C(17)	0.62008 (50)	0.20926 (14)	0.32271 (68)	967 (16)	0.5512 (11)	-0.0748 (9)	0.2213(7)	85 (4)
C(18)	0.04028 (48)	0.23298 (12)	-0.05296 (53)	1020 (15)	0.2585 (6)	0.1872 (9)	0.3731(4)	77 (2)
C(19)	0.20110 (75)	0.08650 (13)	0.16021 (60)	1023 (18)	0.5885 (12)	0.4191 (13)	0.2488 (8)	82 (4)
C(31)	0.38820 (32)	0.10258 (8)	0.66140 (32)	576 (8)	0.7485 (7)	0.0953 (7)	0.0047 (4)	64 (2)
C(32)	0.21373 (33)	0.10914 (8)	0.64367 (33)	612 (9)	0.8502 (6)	0.0293 (8)	-0·0108 (4)	62 (2)
C(33)	0.11210 (37)	0.07605 (9)	0.67431 (39)	685 (10)	0.8474 (7)	-0.0882 (8)	-0.0498 (4)	63 (2)
C(34)	0.17550 (36)	0.03627 (8)	0.72163 (40)	698 (11)	0.7483 (7)	-0.1476 (7)	-0.0765 (4)	64 (2)
C(35)	0.34699 (37)	0.03024 (9)	0.73874 (42)	712 (11)	0.6496 (7)	-0.0815(9)	-0.0638(4)	68 (3)
C(36)	0.45472 (33)	0.06218 (9)	0.71013 (36)	646 (9)	0.6459 (7)	0.0402 (9)	-0.0239(4)	73 (3)
C(37)	0.13019 (48)	0.15147 (11)	0.59286 (54)	786 (13)	0.9643 (8)	0.0865 (12)	0.0167 (7)	87 (4)
C(38)	0.06239 (62)	0.00089 (13)	0.75692 (85)	999 (19)	0.7504 (13)	-0.2780 (9)	-0.1172(6)	89 (4)
C(39)	0.64029 (44)	0.05076 (15)	0.73247 (71)	953 (16)	0.5354 (11)	0.1062 (15)	-0.0138 (9)	100 (5)

Table 5. Final positional parameters and bond distances for the H atoms

		Comp	oound A		Compound B				
		-		C-H				C-H	
	x	У	z	(Å)	x	y	Z	(Å)	
H(1)	0.469 (4)	0.089(1)	0.368 (4)	1.03 (3)	0.683 (7)	0.069 (9)	0.161 (5)	1.01 (9)	
H(3)	0.421 (3)	0.162(1)	0.568 (3)	1.00 (3)	0.829 (11)	0.252 (14)	0.077 (8)	1.01 (13)	
H(4a)	0.769 (6)	0.086(1)	0.344 (6)	1.02 (4)	0.775 (7)	0.267 (12)	0.270 (6)	1.00 (12)	
H(4b)	0.754 (5)	0.133 (1)	0.239 (5)	1.09 (4)	0.851 (8)	0.161 (10)	0.207 (5)	0.99 (9)	
H(4c)	0.631 (5)	0.092 (1)	0.153 (6)	0.96 (4)	0.772 (6)	0.125 (7)	0.288(5)	0.91 (8)	
H(5a)	0.674 (5)	0.181 (1)	0.775 (5)	0.99 (4)	0.746 (9)	0.422 (13)	0.014 (7)	0.98 (13)	
H(5b)	0.684 (5)	0.135(1)	0.867 (6)	1.02 (4)	0.671 (7)	0.348 (8)	-0.037(5)	0.93 (8)	
H(5c)	0.526 (6)	0.166(1)	0.881 (6)	0.98 (5)	0.799 (12)	0.328 (16)	-0.065 (10)	1.00 (15)	
H(13)	0.362 (4)	0.246 (1)	0.125 (4)	0.98 (4)	0.359 (10)	-0.013(13)	0.311(8)	1.03 (13)	
H(15)	0.027 (5)	0.150 (1)	-0.000(5)	0.97 (3)	0.403 (4)	0.375(5)	0.332(3)	0.97 (6)	
H(17a)	0.614(7)	0.238(2)	0.322(7)	0.90 (6)	0.633 (6)	-0.067 (9)	0.234(5)	0.99 (8)	
H(17b)	0.694 (9)	0.212(2)	0.246 (10)	0.94 (8)	0.534 (10)	-0.109 (14)	0.159 (9)	1.05 (14)	
H(17c)	0.699 (7)	0.191 (2)	0.402 (7)	0.97 (5)	0.515 (6)	-0.156 (9)	0.241(5)	0.99 (9)	
H(18a)	0.085 (8)	0.261(2)	-0.064 (8)	0.96 (6)	0.243(9)	0.270(11)	0.409 (8)	1.03 (12)	
H(18b)	-0.044 (7)	0.237 (2)	0.011 (7)	0.93 (6)	0.271(12)	0.132(14)	0.403 (9)	0.75 (15)	
H(18c)	-0·025 (5)	0.221(1)	-0.144 (6)	0.87 (4)	0.188 (8)	0.184 (13)	0.331 (6)	1.07 (10)	
H(19a)	0.206 (6)	0.077 (1)	0.279 (7)	0.96 (5)	0.603 (9)	0.428(12)	0.184 (8)	1.03 (12)	
H(19b)	0.279 (7)	0.070 (2)	0.108 (7)	0.97 (6)	0.657 (11)	0.420 (16)	0.293 (9)	1.06 (13)	
H(19c)	0.078 (6)	0.083 (1)	0.090 (6)	1.03 (5)	0.544 (6)	0.481 (8)	0.255(4)	0.83 (8)	
H(33)	-0.008 (4)	0.082 (1)	0.662 (4)	0.97 (4)	0.902 (9)	-0.127 (11)	-0.058 (6)	0.77 (11)	
H(35)	0.395 (4)	0.003 (1)	0.776 (4)	0.97(3)	0.590 (8)	-0.118(10)	-0.080(6)	0.84 (10)	
H(37a)	0.146 (4)	0.162 (1)	0.478 (5)	0.99 (4)	0.981 (15)	0.175 (22)	-0.021(12)	1.10 (21)	
H(37b)	0.183 (5)	0.172(1)	0.670 (5)	0.93 (4)	0.993 (7)	0.110(9)	0.082 (6)	1.09 (9)	
H(37c)	0.005 (5)	0.150(1)	0.597 (5)	1.02 (4)	1.001 (11)	0.032(12)	-0.014 (7)	0.86 (12)	
H(38a)	-0.013 (8)	0.008 (2)	0.830 (8)	0.95 (7)	0.799 (11)	-0.301(15)	-0.160 (9)	0.91 (13)	
H(38b)	0.121 (8)	-0.022(2)	0.818 (8)	0.94 (6)	0-683 (7)	-0.290(11)	-0.143(6)	0.90 (9)	
H(38c)	-0.021 (9)	-0.001(2)	0.667 (9)	0.86 (6)	0.785 (9)	-0.345(12)	-0.087 (7)	0.93 (12)	
H(39a)	0.682 (9)	0.055 (2)	0.629 (10)	0.95 (8)	0.517 (13)	0.146 (16)	0.034 (11)	0.88 (17)	
H(39b)	0.664 (6)	0.024 (2)	0.773 (7)	0.91 (5)	0.481 (9)	0.062 (9)	0.001 (5)	0.82 (10)	
H(39c)	0.716 (7)	0.073 (2)	0.793 (8)	0.98 (5)	0-482 (13)	0.114 (14)	-0·063 (10)	1.00 (15)	

Table 6. Bond distances (Å) and angles (°)

	A	В		A	В
C(1)–O(2)	1.428 (3)	1.434 (8)	C(14)–C(18)	1.513 (5)	1.483 (10)
C(1) - C(4)	1.528 (7)	1.536 (12)	C(15)-C(16)	1.384 (4)	1-395 (10)
C(1)–C(11)	1.521 (4)	1.521 (10)	C(16)-C(19)	1.514 (5)	1.498 (16)
O(2)–C(3)	1.426 (4)	1.366 (10)	C(31)–C(32)	1.401 (4)	1.404 (11)
C(3)-C(5)	1.521 (4)	1.496 (13)	C(31)C(36)	1.406 (4)	1.413 (12)
C(3)–C(31)	1.519 (4)	1.563 (11)	C(32)–C(33)	1.385 (4)	1.356 (11)
C(11)-C(12)	1.403 (4)	1.406 (11)	C(32)–C(37)	1.513 (4)	1.534 (13)
C(11)–C(16)	1.398 (4)	1-410 (11)	C(33)–C(34)	1.379 (4)	1.388 (11)
C(12)C(13)	1.390 (4)	1.371 (11)	C(34)–C(35)	1 • 376 (4)	1.367 (11)
C(12)-C(17)	1.509 (5)	1.538 (12)	C(34)–C(38)	1 · 510 (6)	1.489 (12)
C(13)-C(14)	1.376 (4)	1.391 (11)	C(35)–C(36)	1 • 385 (4)	1.404 (13)
C(14)-C(15)	1.377 (4)	1.387 (11)	C(36)–C(39)	1.514 (5)	1.483 (16)
	A	В		A	В
C(4)-C(1)-C(11)	113.0 (3) 111.4 (6)	C(11)-C(16)-C(15)	119.4	(3) 118.0 (8)
O(2) - C(1) - C(11)	113.9 (2) 108.9(2)	C(15) - C(16) - C(19)	117.8	(3) 118.0 (8)
O(2) - C(1) - C(4)	106·4 (113.2(7)	C(11) - C(16) - C(19)	122.9	(3) 123.9 (8)
C(1) - O(2) - C(3)	113.8 (2) 117.9(5)	C(3) - C(31) - C(36)	122.5	(2) 122.7 (8)
O(2) - C(3) - C(31)	114.7 (2	114.5(7)	C(3) - C(31) - C(32)	119.0	(2) 118.1 (7)
O(2)-C(3)-C(5)	106-3 (3) 109.8 (8)	C(32) - C(31) - C(36)	118-5	(2) 119.1 (7)
C(5)-C(3)-C(31)	112.5 (112.0(6)	C(31) - C(32) - C(37)	122.5	(3) 121.2 (8)
C(1)-C(11)-C(16)	118.7 (2	2) 118.5 (7)	C(31)-C(32)-C(33)	119.6	(2) 119.4 (7)
C(1)-C(11)-C(12)	122-4 (2	2) 122.4 (7)	C(33)-C(32)-C(37)	117.9	(3) 119.4 (8)
C(12)-C(11)-C(16) 118.9 (3) 119.0 (6)	C(32)-C(33)-C(34)	122.6	(3) 123.4 (7)
C(11)-C(12)-C(17) 123.5 (2	3) 121.6 (7)	C(33)-C(34)-C(38)	121.5	(3) 120.9 (9)
C(11)-C(12)-C(13) 119-2 (3) 120.8 (7)	C(33)-C(34)-C(35)	117.3	(3) 117.3 (7)
C(13)-C(12)-C(17) 117.3 (3) 117.6 (8)	C(35)-C(34)-C(38)	121.2	(3) 121.8 (9)
C(12)-C(13)-C(14) 122.6 (3) 121.4 (7)	C(34)-C(35)-C(36)	122.6	(3) 122.6 (8)
C(13)-C(14)-C(18) 121.1 ($121 \cdot 1 (7)$	C(31)-C(36)-C(35)	119.5	(3) 118.3 (7)
C(13)-C(14)-C(15) 117.3 (3) 117.5 (6)	C(35)-C(36)-C(39)	116.7	(3) 119.1 (9)
C(15)-C(14)-C(18) 121.7 (3) 121.4 (7)	C(31)-C(36)-C(39)	123.8	(3) 122.7 (9)
C(14)-C(15)-C(16) 122.7 (3) 123.2 (7)			

value for the torsion angle and τ_0 a reference internal rotation. Taking as reference (τ_0) that angle which makes the chain R-C-O-C-R planar (staggering the substituents such that the C-O-C-R torsion angles take the value π), we have the values given in Table 8 describing the configuration of the asymmetric C atoms C(1) and C(3). We can see that in compound A both C atoms have the same relative configuration, namely $\{R_{\pi};H_{+},Me_{-}\}$, while in molecule B both C atoms have a different configuration: $\{R_{\pi};H(1)_{-},Me(4)_{+}\}$ vs $\{R_{\pi};H(3)_{+},Me(5)_{-}\}$ (see Table 8), representing the

Table 7. Main torsional angles (°)

	А	В
H(1)-C(1)-C(3)-C(31)	-2.6 (16)	5.7 (45)
H(1)-C(1)-C(3)-H(3)	-109.6(22)	-109.2(88)
C(11)-C(1)-C(3)-H(31)	103.3 (2)	-105.7(7)
C(11)-C(1)-C(3)-H(3)	-3.7(15)	139.4 (76)
C(11)-C(1)-C(3)-C(5)	-121.5(4)	30.1 (14)
H(1)-C(1)-C(3)-C(5)	132.5 (17)	141.5 (46)
C(4)-C(1)-C(3)-C(5)	11.8 (5)	-110.2(13)
C(4)-C(1)-C(3)-C(31)	-123-4 (3)	114-1 (7)
C(4)-C(1)-C(3)-H(3)	129.6 (16)	-0.9 (76)
H(3)-C(3)-O(2)-C(1)	-58.3(15)	-68.2 (78)
C(5)-C(3)-O(2)-C(1)	-174.7(2)	-176.3 (7)
C(31)-C(3)-O(2)-C(1)	60.3 (3)	56.7(8)
C(4)-C(1)-O(2)-C(3)	-177.3(3)	73.5 (7)
H(1)-C(1)-O(2)-C(3)	-58.6 (13)	-47.6 (48)
C(11)-C(1)-O(2)-C(3)	57.6 (3)	-162.5 (6)
O(2)-C(1)-C(11)-C(16)	$-132 \cdot 1$ (3)	-54.2 (9)
O(2)-C(1)-C(11)-C(12)	48.7 (4)	130-4 (6)
O(2)-C(3)-C(31)-C(36)	43.3 (4)	49.6 (10)
O(2)-C(3)-C(31)-C(32)	-135-2 (2)	-134.3 (7)

A

C(3)

-3.6

5.0

Fig. 3. Half-normal probability plot comparison of distances up to 3.5 Å between both isomers.

interchange in the substituents, C(4) vs C(11), as it appears in Fig. 2. That is, compounds A and B have the relative configurations RR and RS respectively.

Considering the molecule as a whole and the pseudo-rotation angles around the $C(1)\cdots C(3)$ line, compound A would have a *threo* configuration (when analogous substituents at each end are staggered by π , the other two substituents are not similarly staggered) and compound B an *erythro* one (when staggering analogous substituents by π , the others are also staggered by π) (see Fig. 1). This is characterized by the pseudo-rotation and the pseudo-configurational angles when staggering the R groups (Table 8). The values for A are near those for the theoretical *threo* configuration (0,+120,-120°) and for B are near those

Table 8. Configurational and conformational characteristics

All values in degrees (e.s.d.'s are 0.5 and 0.8° for A and B respectively).

		An	gle		Compou	nd A		Compound	В
(a) Configurat	tional ang	les							
	ρ[ρ[ρ[ρ[ρ[ρ[C(11)-C(1) H(1)-C(1)* C(4)-C(1)* C(1)-O(2)- C(1)-O(2)- C(1)-O(2)- C(1)-O(2)-	*-O(2)-C(-O(2)-C(3) -O(2)-C(3) -C(3)*-C(3) -C(3)*-H(3) -C(3)*-C(5)	3)])])] 1)])]	57.6 + 122 -58.6 + 122 -177.3 + 122 60.3 + 119 -58.3 + 119 -174.7 + 119	4 = 180 4 = 63.8 4 = -54.9 7 = 180 7 = 61.4 7 = -55.0	162. -47. 73. 56. 68. -176.	$5 - 17 \cdot 5 = 6 - 17 \cdot 5 = 5 - 17 \cdot 5 = 7 + 123 \cdot 3 = 2 + 123 \cdot 3 = 3 + 123 \cdot 3 + 123 \cdot 3 + 123 \cdot 3 + 123 \cdot 3 = 3 + 123 \cdot 3 +$	$ \begin{array}{r} -180 \\ -65 \cdot 1 \\ 56 \cdot 0 \\ 180 \\ 55 \cdot 1 \\ -53 \cdot 0 \end{array} $
(b) Pseudorot	ational an	gles around	the $C(1)\cdots$	C(3) line					
	C H C	$(11)-C(1)\cdots$ $(1)-C(1)\cdots$ $(4)-C(1)\cdots$	··C(3)-C(3 ·C(3)-H(3) C(3)-C(5)	1)	103 109 1	3.3 9.7 1.8		$-105 \cdot 7$ $-109 \cdot 2$ $-110 \cdot 2$	
(c) Pseudocor	nfiguration	nal angles ar	ound the C(1)···C(3) l	ine				
	ρ[ρ[ρ[C(11)–C(1) H(1)–C(1)· C(4)–C(1)·	···C(3)–C(··C(3)–H(3 ··C(3)–C(5	[31)] 3)] -	$ \begin{array}{r} 103 \cdot 3 - 103 \cdot 3 \\ -109 \cdot 7 - 103 \cdot 3 \\ 11 \cdot 8 - 103 \cdot 3 \end{array} $	B = 0 B = -213.0 B = -91.5	$\begin{array}{ccc} 0 & -105 \\ 0 & -109 \\ 5 & -110 \end{array}$	$\cdot 7 + 105 \cdot 7 =$ $\cdot 2 + 105 \cdot 7 =$ $\cdot 2 + 105 \cdot 7 =$	= 0 = -3.6 =4.5
(d) Deformation	ions at the	e substituent	s of the asyn	nmetric C a	itoms				
Compound	Atom	H → Me	Me $\rightarrow R$	$H \rightarrow R$	Compound	Atom	H → Me	Me $\rightarrow R$	$H \rightarrow R$
A	C(1)	-1.3	5.1	-3.8	R	C(1)	1.1	4.0	5.1

-1.4

B

C(3)

-11.9

7.0

4.9

for the *erythro* $(0,0,0^{\circ})$, in terms of the pseudoconfigurational angles.

The torsion angles of Table 7 give a conformation for molecule A with both Me groups almost staggered, and for molecule B with R at C(1) staggered with the Me group at C(3), the other substituents in configurations as described. The deviations from this theoretical reference conformation (Cano, Foces-Foces & García-Blanco, 1979) are $\Delta \tau = 0.6^{\circ}$ at C(1)–C(2) and 2.4° at C(3)–O(2) for compound A and 14.5 and -2.6° respectively for compound B, to give overall twists of 3.0° in A and 11.9° in B. This means that from the reference conformation with the chain R-C-O-C-R planar, the torsion angles are -119.4, -117.6 and 14.5, -122.6° , respectively, as before, to give overall twists of 123.0° for compound A and -108.1° for compound B around the C(1)...C(3) line.

There are some deformations (Cano *et al.*, 1979) in the substituents of C(1) and C(3) from the ideal sp^3 geometry, which are given in Table 8.

The angles between rings are 30.3 and 40.3° respectively for each compound. These rings are about 48° on average from the O-C-C plane.

In compound A an approximate non-crystallographic twofold axis relates both halves of the molecule, passing, when adjusted by least squares through the mid-points of the related atoms, almost through O(2) and running almost parallel to the x axis. Finally, no relevant intermolecular contacts have been detected in the packing.

We thank JEN, Madrid, for allowing us to use the 1100/80 Univac computer, and Professor Alberola, head of the Department of Organic Chemistry at the University of Valladolid, for suggesting this work.

References

- ABRAHAMS, S. C. & KEVE, E. T. (1971). Acta Cryst. A27, 157-165.
- CANO, F. H., FOCES-FOCES, C. & GARCIA-BLANCO, S. (1979). J. Cryst. Mol. Struct. 9, 107-115.
- FOCES-FOCES, C., CANO, F. H. & GARCIA-BLANCO, S. (1980). Acta Cryst. B36, 377-384.
- International Tables for X-ray Crystallography (1974). Vol. IV. Birmingham: Kynoch Press.
- JOHNSON, C. K. (1971). ORTEP II. Report ORNL-3794. Oak Ridge National Laboratory, Tennessee.
- MAIN, P., HULL, S. E., LESSINGER, L., DECLERCQ, J. P., GERMAIN, G. & WOOLFSON, M. M. (1978). MULTAN 78. A System of Computer Programs for the Automatic Solution of Crystal Structures from X-ray Diffraction Data. Univs. of York, England, and Louvain, Belgium.
- STEWART, J. M., KUNDELL, F. A. & BALDWIN, J. C. (1970). The XRAY 70 system. Computer Science Center, Univ. of Maryland, College Park, Maryland.

Acta Cryst. (1982). B38, 1962-1965

Structure of 5-Acetyl-1-(3,5-O-isopropylidene- β -D-xylofuranosyl)uracil

BY D. W. JONES AND J. M. SOWDEN*

School of Chemistry, University of Bradford, Bradford, West Yorkshire, BD7 1DP, England

(Received 10 September 1981; accepted 18 January 1982)

Abstract

The structure of 5-acetyl-1-(3,5-O-isopropylidene- β -D-xylofuranosyl)uracil (β -AXU), a nucleoside with a six-membered isopropylidene ring linked to a fivemembered xylose ring, has been solved by direct methods and refined to a final residual R of 0.048 over 1684 reflections. C₁₄H₁₈N₂O₇, $M_r = 326$, is orthorhombic, P2₁2₁2₁, with a = 6.135(1), b =9.227(2), c = 26.11(1) Å, Z = 4, V = 1478(1) Å³. $D_m = 1.44$ (1), $D_x = 1.46$ Mg m⁻³, μ (Cu K_a) = 1.05 mm⁻¹. The slightly non-planar [maximum displacement of a ring atom is 0.03 (2) Å for the imido N(2)] uracil ring is β -linked to a 3'-endo, 4'-exo (${}^{3}T_4$ puckered) xylofuranose ring. Location of all 18 H atoms revealed a 2.715 (4) Å intermolecular hydrogen bond between OH(2') of the sugar and the acetyl O of the uracil.

Introduction

From its mode of preparation (Cusack, Robinson, Rugg, Shaw & Lofthouse, 1974), 5-acetyl-1-(3,5-

0567-7408/82/071962-04\$01.00

^{*} Present address: Medical Research Council, Computing Laboratory, National Institute for Medical Research, The Ridge-way, Mill Hill, London NW7 1AA, England.